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SYMBOLS 


Ak,Bk,Ck discrete radial derivative coefficients 

a,b radial transform ation parameters 

CD surface pressure drag coefficient L1C p E  dx  

P-Po0 
cP pressure coefficient 

( 1/2)P,&J2 

cP* critical pressure coefficient 

d body diameter 

Fj,k defined by equations (22) and (23) 

I
f fineness ratio, ­

d 
H defined in equation ( 1  9a) 

I body length 

Mo0 free-stream Mach number 

P porosity parameter 

R body radius 

S body cross-sectional area 

um free-stream velocity 

u,v perturbation velocities 

X J  cylindrical coordinates (see fig. 1) 

Y radio of specific heats 


Ar radial step size 


Ax streamwise step size 


4 stretched radial step size 
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stretched radial coordinate 

P2 - M,*('y+ l ) @ x  

perturbation potential 

Subscripts 

grid index 

differen tiation 
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NUMERICAL CALCULATION OF TRANSONIC FLOW ABOUT 

SLENDER BODIES OF REVOLUTION 

Frank R. Bailey 

Ames Research Center 

SUMMARY 

This paper describes a relaxation method for the numerical solution of the transonic small 
disturbance equation for flow about a slender body of revolution. Results for parabolic arc bodies, 
both with and without an attached sting, are compared with wind-tunnel measurements for a 
free-stream Mach number range from 0.90 to  1.20. The method is also used t o  show the effects of 
wind-tunnel wall interference by including boundary conditions representing porous-wall and 
open-jet wind-tunnel test sections. 

INTRODUCTION 

There is currently a renewed interest in the study of transonic aerodynamics as it applies t o  a 
variety of practical problems such as the design of minimumdrag, transonic cruise configurations 
for transport aircraft. Because of the complexity and dominant nonlinearity of mixed transonic 
flows, the development of calculative techniques for predicting transonic aerodynamic 
characteristics has lagged behind the development of techniques for subsonic and supersonic flows. 
Very recently, however, numerical methods have been developed t o  predict inviscid flows, including 
embedded shocks, about two-dimensional airfoils at high subsonic Mach numbers. The most 
efficient techniques at present (refs. 1-3) use relaxation methods to  solve finite-difference 
approximations to  the governing isentropic steady-state equations. The present work uses a 
relaxation method to  calculate steady, inviscid, transonic flow about pointed slender bodies of 
revolution at zero yaw. The numerical method, based on the transonic small disturbance equation, 
extends relaxation methods t o  the entire transonic regime, including both subsonic and supersonic 
free-stream Mach numbers. Boundary conditions in the outer flow are used to  simulate a body in 
free air, in an open jet, and in a wind tunnel having an ideal porous wall. 

BASIC EQUATIONS AND BOUNDARY CONDITIONS 

Consider the inviscid, compressible flow about a slender, pointed body of revolution in 
cylindrical coordinates x and r (made dimensionless with respect to  the length of the body) with 
the x-axis parallel to  the free-stream velocity U, (see fig. 1). Assume that all shock waves are weak 
enough to make vorticity negligible. Under this assumption a velocity potential can be used t o  
calculate the flow field. In particular, a perturbation potential can be defined such that the 



perturbation velocities, made dimensionless with respect to  the free-stream velocity, are u = r$x 
parallel to the x-axis, and v = & parallel to the r-axis. 

The governing differential equation for transonic flow given by slender body theory (see, e.g., 
ref. 4, ch. 2) can be written as 

1
M x x  + f (r4r)r = 0 ( la )  

where 

M, is the free-stream Mach number, and y is the ratio of specific heats (y = 1.4 for air). Note that 
the term 

in the expression for X makes the transonic equation both nonlinear and of mixed 
elliptic-hyperbolic type. If X is positive, equation (1) is elliptic and represents locally subsonic flow; 
if h is negative, equation ( 1 )  is hyperbolic and represents locally supersonic flow. The mixed 
character of the flow field may occur with local supersonic regions embedded in a subsonic flow or 
with local subsonic regions embedded in a supersonic flow. It should be noted that equation (1) is 
also valid in purely subsonic and supersonic flows up to a free-stream Mach number of 
approximately 2 or 3 if the body is sufficiently slender. 

To complete the specification of the problem boundary conditions must be given at the body 
and in the outer flow. The flow tangency condition at the body surface given by the first-order 
slender-body approximation is that near the body axis 

dR
lim (rGr) = R ­
l-0 dx 

For a body in free air the perturbation velocities vanish at infinity which is satisfied by setting 4 

equal to a constant, say zero, at infinity. In addition to  the free-air boundary condition, wall 

boundary conditions may be given to approximate inviscid flow in open-jet and porous-wall , 

wind-tunnel test sections. These boundary conditions can be used to  illustrate wall-induced 

interference effects. Although the formulation is strictly valid for a circular test section, the results 

may be compared to  a square test section of equal cross-sectional area because the effects of wall 

interference at the center of the tunnel should be relatively insensitive to  the actual wall shape. 
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For an open jet, the pressure coefficient vanishes at the jet  boundary, although this boundary 
is not parallel to  the free stream when a disturbance is present. However, in the present investigation 
this departure is assumed small so that a vanishing pressure coefficient is imposed at a surface 
parallel to  the free stream and coinciding with the jet boundary far upstream of the body (ref. 5 ) .  
The open-jet boundary condition becomes 

at the jet boundary. 

The average boundary condition for a porous wall, as derived in reference 6, follows from 
Darcy’s law for slow viscous flow through a porous medium. It is assumed that the average velocity 
normal to the wall is proportional to  the pressure difference across the wall, which is a linearized 
approximation of Darcy’s law for a thin wall, and that the pressure outside the wall is equal to  the 
free-stream pressure. With the wall parallel to the x-axis, the porous wall boundary condition 
becomes 

The quantity P is a porosity parameter (or a Reynolds number of the porous medium) defined by 

where 

uco free-stream velocity 

Po0 free-stream density 

k permeability of porous medium 

P viscosity of air 

t tunnel-wall thickness 

The permeability, k, is determined by the structure of the medium and must be found 
experimentally. 

As the porosity parameter vanishes, equation (4) gives the boundary condition for a solid wall, 
and as the porosity parameter becomes large, equation (4) approaches the open jet boundary 
condition. It should be noted that although truly porous walls are seldom used for transonic wind 
tunnels, the porous wall approximation is a useful mean boundary condition for perforated walls. 
The actual boundary conditions for perforated walls (Le., the combination of an open jet and solid 
wall) lead to  a three-dimensional problem beyond the scope of the present investigation. 
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Finally, the slender-body approximation for the pressure coefficient a t  points near the body is 
given by 

cp= -2($x -($2 ( 6 )  

and on the body surface by 

cP =-2(bx- ($7 ( 7 )  

In transonic and supersonic flows it is necessary t o  take into account the discontinuous change 
in velocities that occur at  shock surfaces. Equation ( l a )  written in divergence form 

can be used to show that the jump condition (see ref. 7) contained in equation (1) is given by 

[P ­

($1 =42 (9) 

where the subscript 1 refers to  conditions before the jump and subscript 2 t o  conditions behind the 
jump. The ‘corresponding Mach number and pressure jump across a normal shock for typical 
transonic Mach numbers can be compared with the Rankine-Hugoniot jumps, and the irrotational 
approximation may be considered a good one if M I  normal to the shock surface does not exceed 
1.25. 

NUMERICAL METHOD 

The computational domain for the numerical calculations is defined by the grid network 
shown in figure 2. Finite-difference approximations to  the derivatives in equation (1)  are 
constructed for each interior grid point, forming a set of nonlinear algebraic equations that are 
solved by relaxation techniques. In the present study both successive overrelaxation (SOR) and 
successive line overrelaxation (SLOR) (e.g., see ref. 8) were used. The studies showed SLOR to be 
superior to  SOR by a factor of about 3 in computing time at  subcritical Mach numbers and by as 
much as a factor of 10 at  M, = 0.99. Therefore, SLOR has been used to  compute the results. 

Of fundamental importance in using relaxation procedures in transonic flow is the concept of 
“mixed differencing,” in which the finite difference formulas for the x-derivatives in equation (1 )  
are locally modified to  account for the mixed subsonic-supersonic character of the flow field. This 
modification is accomplished by testing the local value of ($x to  determine the sign of the term X in 
equation (1). If X is positive, indicating subsonic flow, central differences are used to account for 
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the domain of dependence of elliptic equations. If h is negative, indicating supersonic flow, 
backward differences are used to  account for the absence of upstream influence in hyperbolic 
equations. As a consequence of this mixed differencing, both shock waves and sonic lines evolve 
naturally in the course of the computation. The method is also capable of computing purely 
subsonic and purely supersonic flows, where h does not change sign. 

Difference Formulas 

The finite difference formulation in the present method depends on the structure of the 
finite-difference grid and is different for subsonic and supersonic free-stream Mach numbers. In the 
case of a subsonic free stream the x-grid is divided into three regions (fig. 2). In the middle region, 
which includes the body, the x-grid is equally spaced and the x-derivatives are approximated by 
second-order accurate formulas. When h is positive, the flow is locally subsonic and the formula 
used is 

When h is negative, the flow is locally supersonic and the formula (given in ref. 1 ) used is 

In the regions upstream and downstream of the body an unevenly spaced x-grid is constructed with 
Ax progressively increasing as the upstream and downstream boundaries are approached. For locally 
subsonic flow a first-order accurate central difference formula is used and is given by 

Ax 1A1 = Ax, (Ax, + Ax, ) 

Ax2 - AX,A 2 = -
Ax,  Ax, 

-A~2
A 3 =  -Ax, (Ax, + Ax, ) 
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2
B1 = Ax2(Axl + Ax2 ) 

-2
B2 = AX1AX, 

2
B3 = Ax1 (AX1 + AX,)  

AX^ = X' - xj-,3 

For locally supersonic flow a first-order backward difference formula is used and is given by 

where 

1
C =  Ax1 + AX, 

2Dl = AX, (AX, + AX, ) 

-2 
D2 = Ax, Ax, 

I l 3  

Axl 

AX, 

2 
= Ax, (Ax,  + Ax,)  

= ~ j - ,- xj-, 

= xj - ~ j - ,  

In the case of a supersonic free stream an evenly spaced x-grid is placed over the entire flow 
field, and either equation (10) or (1 1) is used for at every point. 

In the radial direction the finite difference grid spacing is given by the coordinate 
transforma tion 

br 
v = z  (14) 
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having the inverse transformation 

r=- rl 
b - aq 

With the q-grid equally spaced and with appropriate choices of the parameters a and b, the grid 
spacing in r will be fine near the body where the radial gradients are large and relatively much 
coarser a t  large distances from the body where the gradients are small. Note that an equally spaced 
grid in r is obtained by setting a = 0 and b = 1.  

The finite-difference approximation to the radial derivative in equation (1) is given in terms of 
q by the second-order central difference formula 

where 

B -
2(b ­

k - b2(Aq)2 

Boundary Conditions 

The slender-body boundary condition (eq. (2)) is applied at the r = 0 axis in a manner similar 
to  that of reference 1. The body axis is placed along the lower edge of the first grid cell as shown in 
figure 3. The finite-difference approximation for the radial derivative at the first radial grid line 
(k = 1) is expressed in terms of the equally spaced r-grid (a = 0, b = 1) as 

- . .. .-. 

rl  Ar 
(17) 
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In terms of the transformed variable q this approximation becomes 

where 

B = C  = (2b - AT)^ (b - aAq) 
1 ' 4b2(Aq)2 

._A = - 	(2b - aA7.1)~ 
4b2(Aq)2 

Since the derivative is expressed in terms of r4r this formula avoids the singularity at the axis, and 
together with equation (16) leads to  a tridiagonal matrix for the coefficients of 4 along each radial 
line. 

The values of 4 at the body surface needed to  compute the surface pressure coefficients were 
obtained by second-order interpolation formulas when the body surface was between k = 1 and 
k = 2, as shown in figure 3 .  When the body surface was between k = 1 and the body axis, the h ( r )  
variation of 4 assumed by first-order slender-body theory was taken into account and the quantity 
@/Zn(r)was extrapolated t o  the body surface. Numerical studies showed that the best results were 
obtained when the k = 1 grid line was everywhere inside or on the body surface, thus avoiding the 
extrapolation but requiring that Ar be very small near the axis. 

The treatment of the far field boundaries for a slender body in free air depends on whether 
the free stream is subsonic or supersonic. In the case of a subsonic free stream the approach in this 
report was to  use coordinate stretching to  place the free-stream boundary at infinity in the radial 
direction, and at least two body lengths' fore and aft of the body in the free-stream direction. This 
approach is applicable t o  sonic as well as subsonic free-stream velocities, an advantage over using an 
integral equation as in reference 1. 

In the case of a supersonic free stream the lack of upstream influence in the far field allows 
the boundaries to  be placed closer to  the body. The computational domain must be sufficiently 
large, however, to include any embedded subsonic regions behind the detached bow shock or the 
rear recompression shock. The radial boundary must also be sufficiently far removed so that 
disturbances reflected from the boundary do not impinge on the body surface. 

The open jet and porous wall boundary conditions were applied at a fixed radial distance 
corresponding to the average cross-sectional area of the actual wind-tunnel test section. The open jet 
boundary condition (eq. ( 3 ) )  corresponds to a constant perturbation potential, which for 
convenience is set to  zero in the numerical calculation. 

'This condition was established by numerical experiments. 
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The porous wall boundary condition given by equation (4) is satisfied by approximating the 
derivative @rat k = km with a three-point backward difference formula. When the flow at the wall 
is subsonic, @xis replaced by a two-point central difference to give 

where 

When the flow is supersonic, @xis replaced by a three-point backward difference to  give 

The wall boundary condition is incorporated into the transonic equation by substituting 
equations (1  9) into the radial derivative approximation, equation (16), at k = km - 1. For subsonic 
flow at the wall equation (1  6) becomes 

and for supersonic flow 

+ - 	PCkm-~ 
3(H AX + p )  [*J-I ,km -@j-z,km1 

Relaxation Procedure 

The relaxation procedure for solving the transonic problem is illustrated by the finite 
difference approximations to equation (1 ) in the case of free air for the equally spaced region 
shown in figure 2. At interior points 
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and at  points along the body boundary 

If the flow is locally subsonic ($k >0)  the plus sign is used with 

If the flow is locally supersonic (ij,k <0) the minus sign is used with 

In the course of the relaxation, the right side of equations (21) is always computed first. The 
procedure used was to  evaluate hj,k using equation(22a) at each point along a grid column 
0 = const). For hj,k positive, Fj,k is calculated by means of equation (22b) and the calculation 
proceeds to the next point along the column. If hj,k is negative, it is recalculated from 
equation (23a) and Fj,k is found from equation (23b). If hj,k is negative from equation (22a) but 
positive from equation (23a), hj,k and Fj k are set equal to  zero (corresponding to  locally sonic 
flow). 

Once the right side of equations (21) is calculated for one column, the entire column can be 
advanced one iteration. If the advanced results are used to  replace the previous ones before the 
adjacent column is advanced, the method is referred to  as successive line overrelaxation (SLOR). 
This is the technique used in all the computations reported here. 

The details may be described as follows. First define the km - 1 dimensional column vector 2, 

whose elements are the values of the discrete perturbation potential on the jth column as 
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Similarly 

Then, equations (21) can be written in the form 
> 

A ­

6j@j= Fj j = 2 , .  . ., jm - 1 

which represents jm - 2 matrix equations in which each h j  is a (km - 1) by (km - 1) tridiagonal 
matrix having elements given by the left side of equations (21). The relaxation technique is then 
defined by the relation 

-n+l = ;n + w .  (jj-;Jn)
@j J “J 

2 

where n is the iteration count, @jis the intermediate solution from equation (26), which is solved by 
a direct algorithm (see ref. 8, p. 195), and E j  is a diagonal matrix of relaxation parameters. 

The stability and rate of convergence of the relaxation procedure depend on the choice of 
relaxation parameters. The present calculations indicate that acceptable choices of relaxation 
parameters are slightly less than 1 for supersonic regions and between 1 and 2 for subsonic regions 
(see also refs. 1 and 3). In the transonic problem the matrix generated by the difference equations 
changes with each iteration. Consequently, it is not possible to  determine the optimum relaxation 
parameter in advance. In the present calculations the rate of convergence was considerably 
improved by adjusting the relaxation parameters during the relaxation by the use of interactive 
graphics. In this technique the operator interacts with the computer through a cathode ray tube, 
which, as the computations proceed, displays the u perturbation velocity field, the residuals, and 
the iteration count (e.g., see fig. 4). The operator may monitor the solution and adjust the 
relaxation parameters to achieve rapid convergence and, at the same time, prevent the growth of 
instabilities. 

Before the final results were calculated, studies were conducted to establish an acceptable grid 
size for the computations. The primary consideration in the choice of streamwise grid size was its 
effect on shock location and steepness. As a result of these studies, a grid size of Ax = 0.02 was 
chosen for the uniform streamwise grid in the vicinity of the body. 

I 

A total of 109 streamwise grid points was used for the M, < 1 cases. The equally spaced 
middle region (refer to  fig. 2) was defined by the interval -0.26 G x < 1.26. The outer, unequally 
spaced regions were defined by the intervals -2 .36GxG-0.26 in front of the body and 
1.26 <x <3.36 behind the body. In these regions Ax was successively increased by 20 percent as 
the boundaries were approached. 

In the M, > 1 cases an equally spaced streamwise grid was used over the entire flow field. An 
upstream boundary at  x=-O.2 was used for all cases while the location of the downstream 
boundary varied with M,, ranging from x = 1.4 at  M, = 1.O 1 to x = 1.2 at  M, = 1.20. 

11 



In the radial direction a 50 point stretched grid was used, except for the free air calculations at 
&= 1 and 1.01 where 100 points were required to obtain convergence throughout the flow field. 

Studies showed that placing the outer radial boundary at infinity in the free air cases is not 
necessary when the free stream is subsonic. For example, a t  M, = 0.99 the results were insensitive 
to  changes in the boundary location beyond five body lengths, which is about three body lengths 
above the supersonic region. 

DISCUSSION O F  RESULTS 

The present method has been used to  calculate the flow field about a parabolic-arc body of 
fineness ratio, f = 10, with free-stream Mach numbers from M, = 0.90 (purely subsonic flow) to  
M, = 1.20 (purely supersonic flow). Converged solutions were obtained in 75 to  300 iterations, the 
larger numbers corresponding to cases near Mach 1. The computation time varied from 1.5 t o  
10 minutes on the IBM 360/67 computer. 

The pressure coefficients calculated for bodies with and without an aft sting have been 
compared with measurements presented in reference 9 obtained in the NASA Ames 14-Foot 
Transonic Wind Tunnel. The wind tunnel has a square ventilated test section consisting of 
longitudinal slots with corrugated inserts. The data were obtained on an 80-inch model with a 
turbulent boundary layer at a Reynolds number of approximately 27X l o 6 .  The data were not 
corrected for wall interference effects. The body was truncated at x = 0.854 to permit mounting on 
the sting. 

Subsonic Free Stream 

The calculated pressure coefficients for M, = 0.90 are shown in figure 5 both on the body and 
at radial stations from one to  four body diameters in the surrounding field. The results computed 
for the body alone agree well in the region near the forward portion of the body. Much better 
agreement over the aft portion is obtained when the sting is included in the boundary conditions of 
the numerical calculations by setting RdR/dx = 0 along the sting. Viscous effects, however, are 
clearly evident near the sting-body juncture. 

Results for supercritical flow at free-stream Mach numbers of 0.975 and 0.99 are shown in 
figures 6 and 7 ,  respectively. The computed values show a slightly more negative Cp as well as a 
shock location slightly farther downstream than shown by the experimental data. The sting has the 
effect of moving the embedded shock slightly forward, as expected. The calculated embedded 
supersonic regions and Mach lines for these two cases are shown in figures 8 and 9.  Note, that at 
M, = 0.99 the supersonic region extends approximately two body lengths from the axis. This is 
almost twice the actual distance to  the wind-tunnel wall for the experiments presented in > 

reference 9, and thus wind-tunnel wall interference effects are present. 
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Sonic Free Stream 

The Cp distributions obtained at M, = 1 are shown in figure 10. Included in this figure are the 
theoretical results given by Spreiter and Alksne (ref. 10). The theory of reference 10 assumes that 
there is a smooth transition from supersonic t o  subsonic flow along the body surface. The 
computed results as well as the experimental data, however, show evidence of an embedded shock 
near the aft portion of the body. The effect of the sting is t o  cause the computed shock to move 
upstream, but the predicted location still lies significantly downstream of the experimental shock. 
The pressure ratio across the computed shock is much less than that required to  separate a turbulent 

> 
boundary layer (given as p2/p,  = 1.89 in ref. 11, p. 231), and it is reasonable to expect that the 
disagreement between the predicted and experimental shock location is caused by wind-tunnel wall 
interference. This question will be discussed later. 

Supersonic Free Stream 

The computed Cp distributions at M, = 1.01 are shown in figure 1 1. The bow shock appears 
to  be slightly upstrearn of the experimental location and the computed pressure coefficients are 
generally less than the experimental values. The addition of the sting strengthens the recompression 
shock and moves it forward so that it lies just ahead of the sting body juncture but behind the 
experimental shock. Details of the flow field for M, = 1.01 are shown in figure 12. The detached 
bow wave followed by a large embedded region of subsonic flow is clearly evident. A second 
embedded subsonic region can be seen at the end of the body. 

Computed Cp distributions for supercritical flow with an attached bow shock (M, = 1. lo)  are 
shown in figure 13. The results agree well with the wind-tunnel measurements. A careful study of 
the flow field in figure 14 reveals small subsonic regions at the nose and tail. 

Finally, figure 15 shows the results for M, = 1.20. The entire flow field is supersonic, and the 
comparisons show good agreement throughout. 

Wall Interference Effects 

The disagreement between free air inviscid calculations and experimental results can be 
attributed to both viscous effects and wind-tunnel wall interference. Wind-tunnel wall interference 
is particularly important very near Mach 1 where the supersonic region in free air may extend well 
past the walls. In an attempt t o  minimize the effect of the walls, transonic wind tunnels are often 
designed with ventilated walls, either slotted or perforated. For the purpose of analysis, a perforated 
tunnel such as the Ames 14-foot tunnel is treated as one with porous walls. Further, a linearized 
analysis given in reference 12 suggests that as the free-stream Mach number approaches 1, the 

\ 

, blockage effect of porous walls approaches that of an open jet. 

Numerical calculations have been made to  simulate circular open jet and porous wall wind 
tunnels having the same cross-sectional area as the Ames 16foot  wind tunnel (tunnel radius = 1.17 
body lengths). The Cp distribution on the body surface for various wall porosities and the open jet 
are compared with the free air calculations and experimental data at M, = 0.99 in figure 16. Both 
the porous wall and open jet calculations show better agreement with experiment just upstream of 
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the embedded shock. As porosity increases the predicted shock location moves upstream, and the 
experimental shock lies between that predicted with porosity parameters, P = 0.5 and P = 0.75. The 
shock location predicted for the open jet lies significantly upstream of the experimental shock. 
Since the strength of the computed shocks is not sufficient to cause turbulent boundary-layer 
separation, the present inviscid calculations give a good prediction for the shock location. 

Although the porosity parameter for the Ames 14-foot tunnel has not been directly measured, 
correlations of unpublished lift interference data at M, = 0.825 give an estimate of P = 0.77' for 
the Ames 1l-foot transonic wind tunnel which has the same wall geometry as the Ames 14-foot 
tunnel. Thus, this value can be taken as an estimate of the porosity parameter for the 14-foot tunnel 
and agrees closely with the predicted values. 

The results for a porosity parameter of 0.5 and an open jet for M,= 1.0 are shown in 
figure 17 and for M,= 1.01 in figure 18. The porous wall calculations agree well with the 
experimental data over the entire portion of the body from x = 0 to 0.8, including the vicinity of 
the shock. Viscous effects appear in the immediate vicinity of the sting. The open jet calculation 
again predicts an aft shock location upstream of the measured one. Note that at M, = 1.01, the 
bow shock obtained with the porous wall and open jet boundary conditions lies nearer to  the body 
than that calculated for free air. 

Figure 19 presents a comparison of experimental measurements (ref. 9) with numerical 
calculations for the transonic pressure drag rise. Calculations were carried out for free air conditions 
and for a porous wind tunnel with a porosity parameter of 0.5. Two groups of experimental points 
are shown: one obtained by subtracting the experimental base pressure, and theoretical skin friction 
drag components from the total drag as measured by a force balance, and the other obtained by 
integrating the measured surface pressures (see ref. 9). The present numerical results include 
calculations at M, = 0.80, 1.025, and 1.05 as well as those Mach numbers previously discussed. I t  
can be seen that the porous wall results agree well with the experimental measurements throughout 
the drag rise portion of the curve near Mach 1 where wind-tunnel wall interference is expected t o  be 
predominant. In contrast, the free air results show a significant departure from the wind-tunnel 
measurements in this region. In the regions away from Mach 1, the porous wall and free air 
calculations give nearly the same drag. 

CONCLUSIONS 

A stable and efficient relaxation method has been described for numerically calculating 
inviscid transonic flow about slender bodies of revolution. It has been demonstrated that relaxation 
techniques can be applied throughout the transonic regime, including both subsonic and supersonic 
free-stream Mach numbers. Good agreement with experimental data on the body surface and in the 
outer flow illustrates the usefulness of the method in predicting the entire flow field. 

I 
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'Private communication from F. W.Steinle, Ames Research Center, Moffett Field, California, 94035. 
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Calculations with porous-wall and open-jet boundary conditions have shown the applicability 
of relaxation techniques to the study of wind-tunnel wall interference. Results for porous walls 
showed excellent agreement with the wind-tunnel measurements, particularly with regard to the 
transonic drag rise and the embedded shock location. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., 94035, Sept. 2 1, 1971 

15 




REFERENCES 

1. 	Murman, E. M.; and Cole, J. D.: Calculation of Plane Steady Transonic Flows. A I M  J., vol. 9, no. 1,  Jan. 1971, 
pp. 114-121. 

2. 	Murman, E. M.; and Krupp, J. A.: Solution of the Transonic Potential Equations Using a Mixed Finite . 
Difference System. Proc. Second International Conference on Numerical Methods in Fluid Dynamics, Sept. 
1970; Lecture Notes in Physics, 1971, pp. 199-206. 

1 

3. 	Steger, Joseph L.; and Lomax, Harvard: Generalized Relaxation Methods Applied to Problems in Transonic 
Flow. Proc. Second International Conference on Numerical Methods in Fluid Dynamics, Sept. 1970; Lecture 
Notes in Physics, 1971, pp. 193-197. C 

4. 	Ashley, Holt; and Landahl, Marten: Aerodynamics of Wings and Bodies. Addison-Wesley Publishing Co., 
Reading, Mass., 1965. 

5. 	Glauert, Hermann: Wind-Tunnel Interference on Wings, Bodies, and Airscrews. British A.R.C., R&M 1566, 
1933. 

6. 	Goodman, Theodore R.: The Porous Wall Wind Tunnel. Part I1 - Interference Effect on a Cylindrical Body in a 
Two-Dimensional Tunnel at Subsonic Speed. Cornel1 Aeronautical Laboratory, Inc., Rep. AD-594-A-3, 
1950. 

7. 	Lax, Peter D.: Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation. 
Communications of Pure and Applied Mathematics, vol. 7 ,  no. 1, Feb. 1954, pp. 159-193. 

8. Varga, Richard S.: Matrix Iterative Analysis. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. 

9. 	Taylor, Robert A.; and McDevitt, John B.: Pressure Distributions at Transonic Speeds for Parabolic-Arc Bodies 
of Revolution Having Fineness Ratios of 10, 12, and 14. NACA TN 4234, 1958. 

10. Spreiter, John R.; and Alksne, Alberta Y.: Slender-Body Theory Based on Approximate Solution of the 
Transonic Flow Equation. NASA TR R-2, 1959. 

11. Chang, Paul K.: Separation of Flow. Pergamon Press, Oxford, 1970. 

12. 	Baldwin, Barrett S.;Turner, John B.; and Knechtel, Earl D.: Wall Interference in Wind Tunnels With Slotted and 
Porous Boundaries at Subsonic Speeds. NACA TN 3176,1954. 

16 




Figure 1.- Body and coordinate system. 
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Figure 3.- Radial grid near body. 
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Figure 4.- Interactive graphics display showing u-perturbation velocity 
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Figure 5.- Distribution of Cp for parabolic arc of revolution (M, = 0.90 and f = 10). 
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Figure 7.- Distribution of Cp for parabolic arc of revolution (M, = 0.99 and f = 10). 
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Figure 8.- Supersonic region and Mach lines for a parabolic arc of revolution in free air 
(M, = 0.975 and f = 10). 
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Figure 9.- Supersonic region and Mach lines for a parabolic arc of revolution in free air (M, = 0.99 
and f = 10). 
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Figure 10.- Distribution of Cp for parabolic arc of revolution (M, = 1.O and f = 10). 
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Figure 12.- Transonic flow over parabolic arc of revolution showing bow shock, sonic lines, and 
Mach lines (M, = 1.01 and f = 10). 
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Figure 14:- Transonic flow over parabolic arc of revolution showing bow shock, sonic lines, and 
Mach lines (M, = 1,lO and f = 10). 
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Figure 15.- Distribution of Cp for parabolic arc of revolution (M, = 1.20 and f = 10). 
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Figure 18.- Effect of wall conditions on body surface Cp for parabolic arc of revolution with sting (&= 1.01 and 
f =  10). 
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